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We prove that in some reasonable sense, every possible physical law can be 
reformulated in terms of symmetries. This result explains the well-known success 
of the group-theoretic approach in physics. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Traditional physics used differential equations to describe physical laws. 
Modem physical theories (starting from quarks) are often formulated not in 
terms of differential equations (as in Newton's day), but in terms of the 
corresponding symmetry groups (see, e.g., Group Theory in Physics, 1992; 
Symmetries in Physics, 1992; Olver, 1995). Moreover, it turns out that theories 
that were originally proposed in terms of differential equations, including 
general relativity (and the scalar-tensor version of gravity theory), quantum 
mechanics, and electrodynamics, can be reformulated in terms of symmetries 
(Kreinovich, 1976; Finkelstein and Kreinovich, 1985; Finkelstein etal., 1986). 

The symmetry approach has been very successful in physics. Its success 
raises two natural questions: 

�9 How universal is this approach? Can we indeed (as some physicists 
suggest) express any new idea in terms of symmetries? 

�9 Is the fact that many (if not all) physical theories can be expressed 
in terms of symmetries a general mathematical result or a peculiar 
feature of our physical world7 

2. G O A L  OF THIS W O R K  

In this paper, we analyze this problem from a mathematical viewpoint. 
We will show that, in some reasonable sense, every possible physical law 
can be expressed in terms of symmetries. 
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Comment. This result was first announced in Kreinovich and Longpr6 
(1995). 

In order to prove the corresponding theorem, we will have to formalize 
what "law" is and what "symmetry" is. 

3. MOTIVATION OF THE F O L L O W I N G  DEFINITIONS 

3.1. What Do We Mean by "Law"? 

In order to describe what we mean by a physical law, let us first describe 
what it means for an object not to satisfy any law at all. For example, let us 
consider the direction of a linear molecule. If this molecule is magnetic, then 
its orientation must follow a magnetic field. If the molecule is an electric 
dipole, then it must follow an electric field, etc. In all these cases, there is 
a physical law that controls the orientation of the molecule. 

It is also possible that the molecule has neither of these orienting proper- 
ties (or it has, but the corresponding fields are absent). In this case, there is 
no physical law to control its orientation; therefore, the orientation is not 
described by any law, it is random. 

We still have to formalize what "random" means, but so far, we hope, 
the conclusion sounds reasonable: if something does not satisfy any physical 
law, then it is random. 

By inverting this informal statement, we can conclude that an object 
satisfies a physical law if and only if it is not random. To make this definition 
precise, we must define what "random" means. 

3.2. What Do We Mean by "Random"? 

The formal definition of "random" was proposed by Kolmogorov's 
student Martin-Lrf (1966); for the current state of the art, see, e.g., Li and 
Vi~nyi (1993). (We will be using a version of this definition proposed by 
Wald (1937) and Benioff (1976).) 

To describe this definition, let us recall how physicists use the assumption 
that something is random. For example, what can we conclude if we know 
that the sequence of  heads and tails obtained by tossing the coin is random? 
One thing we can conclude is that the fraction of  heads in this sequence 
tends to 1/2 as the number of tosses tends to infinity. What is the traditional 
argument behind this conclusion? In mathematical statistics, there is a mathe- 
matical theorem saying that with respect to the natural probability measure 
on the set of all infinite sequences, for almost all sequences, the frequency 
of heads tends to 1/2. In more mathematical terms, this means that the 
probability measure Ix(S) of the set S of all sequences for which the frequency 
does not tend to 1/2 is 0. 
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Because the property P holds for almost all sequences to, sequences that 
do not satisfy this property are (in some sense) exceptional. Because we have 
assumed that a given sequence to is random, it is therefore not exceptional, 
and hence this sequence to must satisfy the property P. 

The informal argument that justifies this conclusion goes something like 
this: if to does not satisfy the property P, this means that to possesses some 
property (not P) that is very rare (is almost never true), and therefore to is 
not truly random. 

All other existing applications of statistics to physics follow the same 
pattern: we know that something is true for almost all elements, and we 
conclude that it is true for an element that is assumed to be random; in this 
manner, we estimate the fluctuations, apply random processes, etc. So a 
random object is an object that satisfies all the properties that are true for 
almost all objects (almost all with respect to some reasonable probability 
measure). To give a definition of randomness, we must reformulate this 
statement. 

To every property P that is true almost always, we can put into correspon- 
dence a set St, of all objects that do not satisfy P; this set has, therefore, 
measure 0. An object satisfies the property P if and only if it does not belong 
to the set SF, Conversely, if we have a definable set S of measure 0, then the 
property "does not to belong to S" is almost always true. 

In terms of  such sets, we can reformulate the above statement as follows: 
if an object is random, then it does not belong to any definable set of  measure 
0. So, if an object does not belong to any definable set of measure 0, we 
can thus conclude that it has all the properties that are normally deduced for 
random objects, and therefore it can reasonably be called random. 

Thus, we arrive at the following definition: an object is random if and 
only if it does not belong to any definable set S of  measure 0, IX(S) = 0, 
with respect to some natural probability measure Ix. This, in effect, is the 
definition proposed by Martin-LOf. 

Example. In the above example, the state of  possible orientations can 
be represented, as a unit sphere. The natural probability measure on this 
sphere is as follows: Ix(A) is the area of  the set A divided by the total area 
(4~r) of the sphere. 

3.3. What Do We Mean by "Symmetry"? 

A symmetry is a transformation on the set of  all objects. For example, 
for orientations, typical symmetries are rotations. 

A symmetry is usually assumed to be invertible and therefore it must 
be a one-to-one function. 
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A symmetry must also be nontrivial in the sense that being symmetric 
must be a very informative property (i.e., only very few elements must be 
symmetric). In other words, almost all elements must not be invariant with 
respect to a symmetry. 

It is also natural to assume that a symmetry transformation preserves 
the a priori (natural) probability measure. This is not absolutely necessary; 
however, our goal is to prove that every physical law can be expressed in 
terms of  symmetries. Therefore, if we managed to prove that it can be 
expressed in terms of  symmetries that preserve the a priori measure, we have 
proven what we intended to. 

Now, we are ready for the formal definitions. 

4. D E F I N I T I O N S  

�9 Let a language L be fixed (e.g., the language of  set theory). We say 
that a set X is definable if in the language L there is a formula P(Z) 
with one free set variable Z that is tree for only one object: this set X. 

�9 Let U be a set with a probability measure ix. We say that an element 
u ~ U is random with respect to ix if it does not belong to any 
definable set of  ix-measure 0. We say that an element u satisfies 
some law if it is not random. 

�9 By a symmetry S, we mean a 1-1, measure-preserving, definable 
mapping S: U --> U for which ix{uIS(u) = u} = 0 [i.e., almost 
always S(u) q= u]. 

�9 A probability space (U, ix) is nontrivial if  it has at least one symme- 
try So. 

�9 We say that an element u is invariant (or symmetric) w.r.t. S if S(u) 
U. 

5. A S I M P L E  P H Y S I C A L  E X A M P L E  I L L U S T R A T I N G  T H E  
D E F I N I T I O N S  

5.1. Example in Physical Terms 

To illustrate how the above mathematical definitions are related to real 
physical symmetries, let us use the following simple physical example: Let 
us describe the fact that a given spherical molecule has no dipole moment d. 

5.2. Reformulation in Terms of Symmetries: Physicists' Viewpoint 

From the physical viewpoint, this fact can be easily reformulated in 
terms of symmetries: namely, it means that the dipole moment vector d is 
invariant with respect to arbitrary rotations around the center of the molecule. 
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5.3. Reformulation in Terms of the Above Mathematical Definitions 

In this case, the set U is clearly the set of  all possible 3D vectors. If 
we choose a coordinate system in such a way that the center of  the molecule 
is at a point 0 = (0, 0, 0), then this set is in 1-1 correspondence with the 
3D space R 3. 

To apply our definitions, we must choose a probability measure ~ on 
the set U = R 3 that is invariant with respect to all rotations around 0. The 
easiest way to do that is to assume that the components d,, d.~, and dz of the 
vector d are independent Gaussian random variables with one and the same 
standard deviation cr. The probability density p(d) of  the resulting measure 
is equal to 

const, exp 2cr2 

and is therefore invariant with respect to rotations. Let us check that our 
definition of  symmetry is satisfied. 

First, each rotation is measure preserving (this is how we chose a 
measure). Second, each rotation S around 0 is a rotation around a line. The 
set of  all points u that are invariant under this rotation S coincides with this 
line and has therefore measure 0. Thus, according to our definition, S is 
a symmetry. 

Since rotations exist, the probability space (R 3, ~) has at least one 
symmetry and is therefore nontrivial in the sense of  our definition. 

The fact that u --- d = 0 can be now expressed as S(u) = u for all 
rotations S. 

6. T H E  MAIN R ES ULT 

Theorem. A~a element u of a nontrivial probability space (U, t~) satisfies 
some law iff u is invariant with respect to some symmetry. 

Comments:  

�9 In other words, every physical law can be reformulated in terms of  
some symmetries. 

�9 Another corollary is that we can now reformulate the definition of 
randomness in terms of  symmetries: 

Corollary. An element u of a nontrivial probability space U is random 
with respect to p~ iff u is not invariant with respect to any symmetry. 
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7. P R O O F  O F  T H E  T H E O R E M  

Let us first prove that if a given object u is invariant with respect to 
some symmetry S, then u is not random. Indeed, if u is invariant with respect 
to some symmetry S, then u belongs to the set of  invariant elements of  the 
symmetry  S; let us denote this set by I (S) .  Since S is definable, this set I (S)  

is also definable, and by definition of  a symmetry,  this set is of  measure 0. 
Therefore, the element u is not random. 

Let us now prove that if u is not random, then u is invariant with respect 
to some symmetry. Indeed, by the definition of randomness, the fact that u 
is not random means that u belongs to a definable set E of  measure 0. Since 
the probability space (U, Ix) is nontrivial, by definition, it has at least one 
symmetry So. Let us now define a symmetry S ( u )  as follows: 

�9 S ( v )  = v for all v from the set E U S0(E) U S~(E) U " "  U So l(E) U." ". 
�9 S (v )  = So(v)  for all other v. 

It is easy to check that S ( u )  = u. Let us show that S is a symmetry:  

�9 By construction, the function S is 1-1 .  
�9 Outside the set E D So(E) U S~)(E) U - . -  U Sffl(E) U . - - ,  the function 

S coincides with the measure-preserving transformation So. The set 
E has measure 0; since So is a symmetry and hence, measure-preserv- 
ing and 1 - I ,  the sets S0(E) . . . .  all have measure 0. Thus, the union 
set is a union of countably many sets of  measure 0 and hence has a 
measure 0. So S coincides with So everywhere except a set of  measure 
0. Since So is measure-preserving, we can conclude that S is mea- 
sure-preserving. 

�9 An element v is an invariant element of  S iff either v ~ E or v 
S0(E) . . . . .  or So(v)  = v. Thus, I(S) _C E U So(E) U - - .  U l (So) .  We 
have already shown that the set E U S0(E) U ~ ( E )  U " -  U 
Sot(E) U -- .  has measure 0. The set l (So)  has a measure 0, since So 
is a symmetry. Therefore, I(S) is contained in the union of  the sets 
of  measure 0, and is hence itself a set of  measure 0. So, for almost 
all v, we have S(v)=/= v. 

So, S is a symmetry, and thus u is invariant with respect to some 
symmetry. QED 
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